Abstract:

A method for the palladium-catalyzed fluorination of cyclic vinyl triflates has been developed. As with several previous palladium-catalyzed fluorination reactions using fluoride salts, controlling the regioselectivity presented a challenge in developing a practical synthetic procedure. The addition of triethyl(trifluoromethyl)silane (TESCF3) was found to effectively address this problem and resulted in drastically improved regioselectivities in this palladium-catalyzed fluorination reaction. This discovery, along with the use of a new biarylphosphine ligand, allowed for the development of an efficient and highly regioselective protocol for the fluorination of vinyl triflates. This method is compatible with a range of sensitive functional groups and provides access to five-, six-, and seven-membered cyclic vinyl fluorides.