Abstract:

A new biaryl monophosphine ligand (AlPhos, L1) allows for the room-temperature Pd-catalyzed fluorination of a variety of activated (hetero)aryl triflates. Furthermore, aryl triflates and bromides that are prone to give mixtures of regioisomeric aryl fluorides with Pd-catalysis can now be converted to the desired aryl fluorides with high regioselectivity. Analysis of the solid-state structures of several Pd(II) complexes, as well as density functional theory (DFT) calculations, shed light on the origin of the enhanced reactivity observed with L1.A new biaryl monophosphine ligand (AlPhos, L1) allows for the room-temperature Pd-catalyzed fluorination of a variety of activated (hetero)aryl triflates. Furthermore, aryl triflates and bromides that are prone to give mixtures of regioisomeric aryl fluorides with Pd-catalysis can now be converted to the desired aryl fluorides with high regioselectivity. Analysis of the solid-state structures of several Pd(II) complexes, as well as density functional theory (DFT) calculations, shed light on the origin of the enhanced reactivity observed with L1.